Friday, December 28, 2018

247: Wombat Geometry

Audio Link

Recently as I was watching TV with my wife, it suddenly occurred to me that we didn’t have an episode yet on one of the most important mathematical news developments of 2018.    Perhaps you’re thinking I should be featuring new developments in high-energy physics, or something about the recently awarded 2018 Fields Medal winners?    True, those would make good topics, but the one I’m thinking of came up as we were watching “Crikey It’s the Irwins”, that show about cute animals at the Australia Zoo.   I am, of course, talking about new advances in our understanding of cubic wombat dung.

Wombats, in case you haven’t seen one, are cute, furry marsupials related to koalas, and can be found mainly in Australia.    And yes, you heard me right— they are the only animals that generate cube-shaped poop.   I thought this was a joke at first, but numerous sources confirm it; you can find many photos online if you’re skeptical.    For a long time it was a mystery how wombats do this.   In real life, cubes are not an easy shape to generate:  in human-run manufacturing, you basically need to start with some kind of cubic mold, or directly cut materials into cube shapes.   So advances in our understanding of how this happens can have real economic benefits and applications to industry.    Recently a team of scientists led by Patricia Yang at Georgia Tech did some new experiments to discover exactly how this works.

You might guess at first that wombat dung is made up of some kind of crystal, since crystals are one major source of regular shapes with sharp angles in nature.   But that’s not it at all— this dung is similar smelly stuff to what other mammals generate, though it is a bit drier due to wombat metabolism, which helps it hold its shape.    You might then guess that there is effectively some kind of extrusion mold in the wombat’s bodily structure, similar to how our factories would generate that kind of shape.   But that’s not it either.   Somehow the wombats generate this cubic dung purely through soft-tissue activity, and don’t have any explicit square or cube shapes visible anywhere in their body.

Yang’s team ordered some roadkill wombat bodies from Australia, and did some experiments where they inflated balloons in their intestines to measure the elasticity, or stretchiness, at various points along their digestive tract.   They then did the same for pigs, as a control.  They found that the pigs’ intestines had roughly uniform elasticity, leading to the roundish dung generated by pigs and most other animals.   But wombats’ intestines were very irregular, containing some more and less stretchy parts, and in particular two groove-like stretchy areas.   Yang believes these are they key to shaping the dung as it travels down the tract.   Of course, there are a lot of followup questions to answer, such as how two stretchier areas lead to a full cubic shape, but the experiments are continuing.

At this point, you probably are also thinking of another question that Yang didn’t address:   *why* the wombats generate dung in this shape.   There must be some evolutionary advantage, right?    According to most online sources, the key is probably in the fact that they use the dung to mark territory.   Popular Mechanics suggests that the cubes can be stacked to build walls, but other sources note that wombats have never been observed to do this.  However, they do often leave their dung markers in precarious locations like on top of rocks or logs— this probably is able to signal to competitors from farther away than if left on the ground.    And if you want something to stay on top of a log or rock, a shape that is less likely to roll away provides a clear advantage.

I think I know the real secret, however.   Deep down in their burrows, wombats like to play Dungeons and Dragons during their downtime from foraging for food.   They must especially like playing wizards, and need lots of 6-sided dice to roll damage for their fireball spells.   Maybe as D&D geeks grow to dominate the human race, we too will develop this evolutionary manufacturing shortcut.    I prefer the smell of plastic dice personally, but I’m probably just less evolved than the common wombat.

And this has been your math mutation for today.


References:




No comments:

Post a Comment